9 research outputs found

    Rough Neural Networks Architecture For Improving Generalization In Pattern Recognition

    Get PDF
    Neural networks are found to be attractive trainable machines for pattern recognition. The capability of these models to accommodate wide variety and variability of conditions, and the ability to imitate brain functions, make them popular research area. This research focuses on developing hybrid rough neural networks. These novel approaches are assumed to provide superior performance with respect to detection and automatic target recognition.In this thesis, hybrid architectures of rough set theory and neural networks have been investigated, developed, and implemented. The first hybrid approach provides novel neural network referred to as Rough Shared weight Neural Networks (RSNN). It uses the concept of approximation based on rough neurons to feature extraction, and experiences the methodology of weight sharing. The network stages are a feature extraction network, and a classification network. The extraction network is composed of rough neurons that accounts for the upper and lower approximations and embeds a membership function to replace ordinary activation functions. The neural network learns the rough set’s upper and lower approximations as feature extractors simultaneously with classification. The RSNN implements a novel approximation transform. The basic design for the network is provided together with the learning rules. The architecture provides a novel method to pattern recognition and is expected to be robust to any pattern recognition problem. The second hybrid approach is a two stand alone subsystems, referred to as Rough Neural Networks (RNN). The extraction network extracts detectors that represent pattern’s classes to be supplied to the classification network. It works as a filter for original distilled features based on equivalence relations and rough set reduction, while the second is responsible for classification of the outputs from the first system. The two approaches were applied to image pattern recognition problems. The RSNN was applied to automatic target recognition problem. The data is Synthetic Aperture Radar (SAR) image scenes of tanks, and background. The RSNN provides a novel methodology for designing nonlinear filters without prior knowledge of the problem domain. The RNN was used to detect patterns present in satellite image. A novel feature extraction algorithm was developed to extract the feature vectors. The algorithm enhances the recognition ability of the system compared to manual extraction and labeling of pattern classes. The performance of the rough backpropagation network is improved compared to backpropagation of the same architecture. The network has been designed to produce detection plane for the desired pattern. The hybrid approaches developed in this thesis provide novel techniques to recognition static and dynamic representation of patterns. In both domains the rough set theory improved generalization of the neural networks paradigms. The methodologies are theoretically robust to any pattern recognition problem, and are proved practically for image environments

    Improving generalization in backpropagation networks architectures

    No full text
    This paper gives a prototype recognizer that uses rough reduction module to find the optimal representation for backpropagation networks. The proposed approach exhibits a hybrid methodology for feedforward neural networks and rough set theory. The system is a two stand alone subsystems, in which the output of the first is fed to the second for recognition tasks. The system is investigated for detection and recognition of patterns present in an image. The rough module deals with uncertainty and irrelevant observations inherited in the data. The novel architecture integrates the two approaches to recognize pattern efficiently, with minimal neurons architecture

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    Get PDF
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc

    ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19

    No full text
    The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text

    Association of Country Income Level With the Characteristics and Outcomes of Critically Ill Patients Hospitalized With Acute Kidney Injury and COVID-19

    No full text
    Introduction: Acute kidney injury (AKI) has been identified as one of the most common and significant problems in hospitalized patients with COVID-19. However, studies examining the relationship between COVID-19 and AKI in low- and low-middle income countries (LLMIC) are lacking. Given that AKI is known to carry a higher mortality rate in these countries, it is important to understand differences in this population. Methods: This prospective, observational study examines the AKI incidence and characteristics of 32,210 patients with COVID-19 from 49 countries across all income levels who were admitted to an intensive care unit during their hospital stay. Results: Among patients with COVID-19 admitted to the intensive care unit, AKI incidence was highest in patients in LLMIC, followed by patients in upper-middle income countries (UMIC) and high-income countries (HIC) (53%, 38%, and 30%, respectively), whereas dialysis rates were lowest among patients with AKI from LLMIC and highest among those from HIC (27% vs. 45%). Patients with AKI in LLMIC had the largest proportion of community-acquired AKI (CA-AKI) and highest rate of in-hospital death (79% vs. 54% in HIC and 66% in UMIC). The association between AKI, being from LLMIC and in-hospital death persisted even after adjusting for disease severity. Conclusions: AKI is a particularly devastating complication of COVID-19 among patients from poorer nations where the gaps in accessibility and quality of healthcare delivery have a major impact on patient outcomes
    corecore